Ramanujan investigated nested radicals. His notebooks may contain proofs of the results below and if so they may be easier to follow.

Consider a sequence formed of radicals, $\sqrt{ }$, nested n deep:

$$
\begin{equation*}
S_{n}=\sqrt{1+\sqrt{1+\sqrt{1+\cdots+\sqrt{1}}}} \tag{1}
\end{equation*}
$$

S_{n} satisfies the recurrence:

$$
\begin{equation*}
S_{1}=1 ; \quad S_{n+1}=\sqrt{1+S_{n}} \tag{2}
\end{equation*}
$$

We can show that $\lim _{n \rightarrow \infty} S_{n}$ exists by induction, proving that it is monotonically increasing and bounded above. By squaring equation (2) and manipulating:

$$
\begin{align*}
S_{2}-S_{1} & >0 \tag{3}\\
\text { assume: } S_{n+1}-S n & >0 \tag{4}\\
S_{n+2}^{2}-S_{n+1}^{2} & =S_{n+1}-S n \tag{5}\\
S_{n+2}-S_{n+1} & >0 \text { and by induction } S_{n} \text { is monotonically increasing } \tag{6}\\
S_{1} & <2 \tag{7}\\
\text { assume: } S_{n} & <2 \tag{8}\\
S_{n+1}^{2} & =1+S_{n}<1+2<4 \tag{9}\\
S_{n+1} & <2 \tag{10}
\end{align*}
$$

Applying the results (6) and 10 with Lemma 1 from this proof of the Bolzano-Weierstrass theorem we have that S_{n} converges to a limit between 1 and 2. Call this limit ρ. Since $f(x)=\sqrt{1+x}$ is continuous,

$$
\begin{align*}
\rho & =\lim _{n \rightarrow \infty} \sqrt{1+S_{n}} \tag{11}\\
& =\sqrt{1+\lim _{n \rightarrow \infty} S_{n}} \tag{12}\\
& =\sqrt{1+\rho} \tag{13}\\
& =\frac{1+\sqrt{5}}{2} \tag{14}
\end{align*}
$$

Does the following sequence have a limit and what is it?

$$
\begin{equation*}
R_{n}=\sqrt{1+2 \sqrt{1+3 \sqrt{1+4 \sqrt{1+5 \sqrt{\ldots \sqrt{1+n \sqrt{1+n+1}}}}}}} \tag{15}
\end{equation*}
$$

Consider more general sequences formed by the iterated compositions of radicals:

$$
\begin{equation*}
S_{k n}=\sqrt{1+k \sqrt{1+(k+1) \ldots \sqrt{1+n \sqrt{1+n+1}}}} \tag{16}
\end{equation*}
$$

and:

$$
\begin{equation*}
T_{k n}=\sqrt{1+k \sqrt{1+(k+1) \ldots \sqrt{1+n \sqrt{1+(n+1)(n+3)}}}} \tag{17}
\end{equation*}
$$

Notice that $0<S_{k n}<S_{k n}$ and that $S_{k n}<T_{k n}$. $T_{k n}$ has the fun property that $T_{k n}=k+1$ for all n. Therefore, $\lim _{n \rightarrow \infty} S_{k n} \leq k+1$ and exists since $S_{k n}$ is nondecreasing. Define $S_{k}=\lim _{n \rightarrow \infty} S_{k n}$. Note that $S_{k} \leq k+1$, which will be needed later.

A calculation of $S_{275}=2.99999999999999999999976717 \ldots$ suggests that $\lim _{n \rightarrow \infty} S_{k n}=k+1$. So we know what to prove.

Since the limits exist we can write:

$$
\begin{align*}
S_{k} & >\sqrt{k \sqrt{k \sqrt{k \ldots}}} \tag{18}\\
S_{k} & >k^{\frac{1}{2}+\frac{1}{4}+\frac{1}{8}+\ldots} \tag{19}\\
S_{k}> & > \tag{20}\\
k+1-S_{k}= & k+1-\sqrt{1+k S_{k+1}} \tag{21}\\
& \text { rationalizing on the right } \tag{22}\\
k+1-S_{k}= & \frac{(k+1)^{2}-1-k S_{k+1}}{k+1+\sqrt{1+(k+1) S_{k+1}}} \tag{23}\\
k+1-S_{k}= & \frac{k}{k+1+S_{k}}\left(k+2-S_{k+1}\right) \tag{24}\\
& \tag{25}\\
k+2-S_{k+1}< & 1 \tag{26}\\
k+1+S_{k} & >2 k+1 \tag{27}\\
k+1-S_{k}< & k /(2 k+1)<\frac{1}{2} \tag{28}\\
S_{k} & >k+1 / 2 \tag{29}
\end{align*}
$$

Repeating these steps with the new lower bound $S_{k}>k+1 / 2$ gives:
$S_{k}>k+1 / 2+1 / 4 \ldots$ etc.
$S_{k} \leq k+1$ as noted above
$S_{k}=k+1$ by sandwiching

