Alternate solution, January 18, 2007

\frac{1\cdot 3 \cdot 5 \cdots (2n-1)}{2 \cdot 4 \cdot 6 \cdots  (2n)} =   \prod_{k=1}^n \frac{2k-1}{2k} =  \prod_{k=1}^n \left(1 - \frac{1}{2k}\right) <

\prod_{k=1}^n \exp \left(-1/(2k)\right) = \exp \left(-\sum_{k=1}^n \frac{1}{2k} \right) .

But \lim_{n\to\infty} \exp\left(-\sum_{k=1}^n \frac{1}{2k}\right) = 0, since \sum_{k=1}^\infty \frac{1}{2k} = \infty.

Therefore \lim_{n\to\infty} \frac{1\cdot 3 \cdot 5 \cdots (2n-1)}{2 \cdot 4 \cdot 6 \cdots  (2n)} = 0 .