Sol032106

\mathrm{Let\ }n\in\mathbb{N}^* .\mathrm{\ \ Solve\ the\ equation\ }\sum_{k=0}^n {n \choose k}\cos(2kx)=\cos (nx)\mathrm{\  in\  }\mathbb{R}.\,

Solution by landen

The left side of the problem can be summed(method below) in closed form to get:

\sum_{k=0}^n {n\choose k}\cos(2kx)=2^{n}\,\cos ^{n}x\,\cos \left(n\,x\right)

Now we can solve:

2^{n}\,\cos ^{n}x\,\cos \left(n\,x\right)=\cos (nx)

We get a pile of solutions when nx is an odd multiple of π / 2, because cos(nx) = 0. When cos(nx) is non-zero, we can divide it out to get:

\cos ^{n}x = 1/2^n\,

This provides an infinite set of solutions when cos(x) = 1 / 2. If n is even there is another set when cos(x) = − 1 / 2.

The trig identity justification

\mathrm{Consider: }\left(e^{i\,x}+e^ {- i\,x }\right)^{n}\,e^{i\,n\,x}

\mathrm{The\ real\ part\ of\ this\ is:\ }2^{n}\,\cos ^{n}x\,\cos \left(n\,x\right)\mathrm{\ by\ Euler's\ identity.}

We can expand with the binary formula first, use Euler's identity, take the real part, and get exactly the sum we need so:

\sum_{k=0}^n {n \choose k}\cos(2kx)=2^{n}\,\cos ^{n}x\,\cos \left(n\,x\right)

\square