Sol043006

Official Solutions

1.

\lim_{n\rightarrow\infty}\;\frac{1}{n^2} \prod_{i=1}^n{\left(n^2+i^2\right)^{\frac{1}{n}}}\qquad(1)

By taking logs we can convert the problem to a sum:

\log(limit)=\lim_{n\rightarrow\infty}\;\log(\frac{1}{n^2})+ \sum_{i=1}^n\frac{1}{n}\log\left(n^2+i^2\right)= \sum_{i=1}^n\frac{1}{n}\log\left(1+\left(\frac{i}{n}\right)^2\right)\qquad(2)

Now we have a Riemann sum on the right of equation (2).

\log(limit)=\int_0^1\log(1+x^2)\;dx=\log 2+{{\pi}\over{2}}-2\qquad(3)
limit = 2\,e^{{{\pi}\over{2}}-2}\qquad\square

2. Does this sum converge:

\sum_{n=1}^{\infty}\, \left| e - \left(1+\frac{1}{n}\right)^{n}\right|\qquad(1)

This is a positive series so the limit comparison test (http://pirate.shu.edu/projects/reals/numser/t_lcomp.html) is often useful.

\mbox{It is well known that }\sum_{n=1}^{\infty}\frac{1}{n}\mbox{ diverges. So consider:}
\lim_{n\rightarrow\infty}\frac{\left| e - \left(1+\frac{1}{n}\right)^{n}\right|}{\frac{1}{n}} = \lim_{u\rightarrow 0}\frac{\left| e - \left(1+u\right)^{\frac{1}{u}}\right|}{u} =
-\left(\lim_{u\rightarrow 0}{\left(u+1\right)^{{{1}\over{u}}}\,  \left({{1}\over{u\,\left(u+1\right)}}-{{\log \left(u+1\right)}\over{  u^2}}\right)}\right)=
e\,\left(\lim_{u\rightarrow 0}{{{\left(u+1\right)\,\log \left(u+1  \right)-u}\over{u^3+u^2}}}\right)\mbox{ after one application of l}^\prime\mbox{H}\hat{\mathrm{o}}\mbox{pital and taking one limit}

One way to continue is to expand the numerator in a short Taylor series:

\lim_{u\rightarrow 0}e\left(\frac{{{u^2}\over{2}}+\cdots}{u^3+u^2}\right)=  \frac{e}{2}

Therefore, proposition in line (1) diverges by the limit comparison test. \qquad\square