SolAug0706

For a,b,c >0, \in \mathbb{R} find the upper(LUB) and lower(GLB) limits of:

\frac{a}{a+b}+\frac{b}{b+c}+\frac{c}{c+a}

Solution I by landen

As is common in a homogenous expression we can take a + b + c = 1 without loss of generality.

\mbox{Notice that: }\lim_{c\rightarrow 0} \lim_{b\rightarrow 0}\frac{a}{a+b}+\frac{b}{b+c}+\frac{c}{c+a}=1
\mbox{and }\lim_{b\rightarrow 0} \lim_{c\rightarrow 0}\frac{a}{a+b}+\frac{b}{b+c}+\frac{c}{c+a}=2

Sometimes these expressions have a max or min out in the middle at: a = b = c. In this case this is 3/2 so we make a hypothesis that the GLB is 1 and the LUB is 2.

\frac{a}{a+b}+\frac{b}{b+c}+\frac{c}{c+a}-2={{-b\,c^2-\left(a\,b+a^2\right)\,c-a\,b^2}\over{\left(b+a\right)\,  \left(c+a\right)\,\left(c+b\right)}}<0

So we can't reach 2 but we already know it is a possible limit so 2 is the LUB.

\frac{a}{a+b}+\frac{b}{b+c}+\frac{c}{c+a}-1={{a\,c^2+\left(b^2+a\,b\right)\,c+a^2\,b}\over{\left(b+a\right)\,  \left(c+a\right)\,\left(c+b\right)}}>0

Now we know we can't reach 1 on the lower side so 1 is the GLB since it is a limit. \square

Solution II by bumpero, int-e, and landen

Using the weighted power mean (http://planetmath.org/encyclopedia/WeightedPowerMean.html) with weights a,b,c with a + b + c = 1, and powers r=-1,\ r=1:

(a(a+b)^{-1} + b(b+c)^{-1} + c(c+a)^{-1})^{-1} \le a(a+b)+b(b+c)+c(c+a)\le (a+b+c)^2 = 1\,
a(a+b)^{-1} + b(b+c)^{-1} + c(c+a)^{-1}\ge 1\qquad (*)\,
\mbox{Notice: }a(a+b)^{-1} + b(b+c)^{-1} + c(c+a)^{-1}+b(b+a)^{-1} + c(c+b)^{-1} + a(a+c)^{-1}=3\,
b(b+a)^{-1} + c(c+b)^{-1} + a(a+c)^{-1} \ge 1 \mbox{ using (*) and different variable names}\,
\mbox{Subtracting the last two lines: }a(a+b)^{-1} + b(b+c)^{-1} + c(c+a)^{-1}<=2\qquad \square\,

Solution III by landen under construction

f(a,b,c)=\frac{a}{a+b}+\frac{b}{b+c}+\frac{c}{c+a}

Notice that f(a,b,c)=\frac{3}{2} if any two of the variables are equal. So, any case of equality is easy. Also, f(a,b,c)=f(c,a,b)=f(b,c,a)\,. This equality property is called cyclic symmetry. We can take a\, to be the largest variable without loss of generality. Either, a>b>c\, or a>c>b\, for all unequal cases.

f(a,b,c)-f(a,c,b)={{\left(a-b\right)\,\left(b-c\right)\,\left(a-c\right)}\over{  \left(b+a\right)\,\left(c+a\right)\,\left(c+b\right)}}

The previous equation tells us that for determinining the maximum of f(a,b,c)\, we can consider the case a>b>c\, only. The sign of (b-c)\, governs whether f(a,b,c)>f(a,c,b)\, or not. In finding the max of f(a,b,c)\, we do not need to consider the case a>c>b\,. In finding the min of f(a,b,c)\, we do not need to consider the case a>b>c\,.

\frac{a}{a+b}+\frac{c}{c+a} < \frac{a}{a+c}+\frac{c}{c+a}=1 \mbox{ if }a>b>c
f(a,b,c)=\frac{a}{a+b}+\frac{b}{b+c}+\frac{c}{c+a}<2

Then for the lower bound:

\frac{a}{a+b}+\frac{c}{c+a} > \frac{a}{a+c}+\frac{c}{c+a}=1 \mbox{ if }a>c>b
f(a,b,c)=\frac{a}{a+b}+\frac{b}{b+c}+\frac{c}{c+a}>1

\qquad \square