SolAug1806

from Prof. Vasile Crîtoaje

\mbox{Given: }a,b,c>0\mbox{ and }a+b+c=3,\mbox{ show that:}\,
f(a,b,c)={{b}\over{b\,c+1}}+{{c}\over{a\,c+1}}+{{a}\over{a\,b+1}}\ge\frac{3}{2}

Solution by landen with help from int-e

int-e helped a lot by pointing out how obnoxious this function is and that all the methods we had been trying wouldn't work. landen reluctantly got out Maxima (http://maxima.sourceforge.net). Somebody find a cute proof!

Proof: Since we have cyclic symmetry we can assume a\ge b,\ a\ge c without loss of generality. Also notice that: f(a,b,c)-f(a,c,b)={{\left(a-b\right)\,\left(a-c\right)\,\left(b-c\right)}\over{\left(  a\,b+1\right)\,\left(a\,c+1\right)\,\left(b\,c+1\right)}}

If b\le c\,, then f(a,b,c) \le f(a,c,b)\,. We want a lower bound for f(a,b,c)\,, it is sufficient to consider a\ge c \ge b since the lower bound of f(a,b,c)\, will be a lower bound for the other permutations of \{a,b,c\}\,. Sometimes this helps with cyclic symmetry.

Next, we, aka Maxima, homogenize:

{{b}\over{b\,c+1}}+{{c}\over{a\,c+1}}+{{a}\over{a\,b+1}}-\frac{3}{2}

Replace 1 by \left( \frac{a+b+c}{3}\right)^2 in the denominator to make the denominator a quadratic. Then multiply the numerator by \frac{a+b+c}{3} to make it a quadratic also. Then get a common denominator. After this manipulation we get an equivalent problem:
3\,c^6+45\,b\,c^5-9\,a\,c^5+99\,b^2\,c^4-72\,a\,b\,c^4-9\,a^2\,c^4+  60\,b^3\,c^3+207\,a\,b^2\,c^3+153\,a^2\,b\,c^3+60\,a^3\,c^3-9\,b^4\,  c^2+
153\,a\,b^3\,c^2-1431\,a^2\,b^2\,c^2+207\,a^3\,b\,c^2+99\,a^4\,c  ^2-9\,b^5\,c-72\,a\,b^4\,c+207\,a^2\,b^3\,c+153\,a^3\,b^2\,c-72\,a^4  \,b\,c+
45\,a^5\,c+3\,b^6+45\,a\,b^5+99\,a^2\,b^4+60\,a^3\,b^3-9\,a^4  \,b^2-9\,a^5\,b+3\,a^6\ge 0

This is a polynomial with every term of degree 6 and it is homogeneous which is usually a simplification of a constrained inequality. Next, we can set:

a=b+u+v;\qquad c=b+v; \mbox{ with }u\ge 0;\quad v\ge0;

Maxima easily does this substitution and the result is:
192\,v^6+792\,u\,v^5+1404\,b\,v^5+1260\,u^2\,v^4+4482\,b\,u\,v^4+
3159\,b^2\,v^4+966\,u^3\,v^3+5292\,b\,u^2\,v^3+7776\,b^2\,u\,v^3+
2916\,b^3\,v^3+369\,u^4\,v^2+2727\,b\,u^3\,v^2+7290\,b^2\,u^2\,v^2+
5103\,b^3\,u\,v^2+972\,b^4\,v^2+63\,u^5\,v+621\,b\,u^4\,v+2673\,b^2\,u^3\,v+
4131\,b^3\,u^2\,v+972\,b^4\,u\,v+3\,u^6+54\,b\,u^5+243\,b^2 \,u^4+
972\,b^3\,u^3+972\,b^4\,u^2 \ge 0

\square