SolFeb2205 argz

Claim: If a,b,c are positive reals, then a^a b^b c^c \ge (abc)^{(a+b+c)/3}.

Proof: (Due to argz.) Assume, wlog, that a \le b \le c. Then, since a \le b

\left(\frac{a}{b}\right)^a \ge \left(\frac{a}{b}\right)^b ,

so a^ab^b \ge a^b b^a. Hence by the same reasoning,

(a^a b^b c^c)^2 = (a^ab^b)(a^ac^c)(b^bc^c) \ge (a^b b^a)(a^c c^a)(b^c)(c^b)= a^{b+c}b^{a+c}c^{a+b},

and multiplying both sides by aabbcc and taking cube roots gives us the inequality.