SolFeb2506

bonus problem: show for a,b,c > 0:

\frac{a}{b+c}+\frac{b}{a+c}+\frac{c}{a+b}\ge \frac{3}{2}

Solution I For a proof by contradiction approach assume:

\frac{a}{b+c}+\frac{b}{a+c}+\frac{c}{a+b}< \frac{3}{2}

Multiplying a,b,c\, by a positive constant t\, does not change the left side of the inequality. For convenience we can take a+b+c=1\,

\frac{a}{b+c}+\frac{b+c}{b+c}+\frac{b}{a+c}+\frac{a+c}{a+c}+ \frac{c}{a+b}+\frac{a+b}{a+b}<3+3/2
\frac{1}{b+c}+\frac{1}{a+c}+\frac{1}{a+b}<\frac{9}{2}

Next we show that this inequality cannot hold.

From the reciprocal of the harmonic-arithmetic mean inequality (http://planetmath.org/encyclopedia/ProofOfArithmeticGeometricHarmonicMeansInequality.html), we get:

\frac{\frac{1}{b+c}+\frac{1}{a+c}+\frac{1}{a+b}}{3}\ge \frac{3}{b+c+a+c+a+b}=\frac{3}{2}
\frac{1}{b+c}+\frac{1}{a+c}+\frac{1}{a+b}\ge\frac{9}{2}

So the original inequality is true by proof by contradiction.

Solution II For a proof using a little calculus Define

m=a+b+c\quad \mathrm{and}\quad f(x)=\frac{x}{m-x}\,

Rewrite the left side of the inequality:

\frac{a}{m-a}+\frac{b}{m-b}+\frac{c}{m-c}=f(a)+f(b)+f(c)

Taking the second derivative of f(x)\,:

{{d^2}\over{d\,x^2}}\,f\left(x\right)={{2\,x}\over{\left(m-x\right)  ^3}}+{{2}\over{\left(m-x\right)^2}}>0

Since the second derivative is positive for 0<x<m\,, we find that f(x)\, is convex. For a convex function we can apply Jensen's (http://www.engineering.usu.edu/classes/ece/7680/lecture2/node5.html) inequality, the average of the function at points is greater than or equal to the function evaluated at the average of the points:

\frac{f(a)+f(b)+f(c)}{3}\ge f\left(\frac{a+b+c}{3}\right)=\frac{1}{2}

Multiplying by 3 establishes the inequality. Q.E.D.