SolSept0806

\lim_{x\rightarrow 0}{{{\sqrt{x^2+1}-\sqrt{1-x^2}}\over{1-\cos x}}}

This is an indeterminate form because \lim_{x\rightarrow 0}\ (1-\cos x)= 0.

Apply l'Hôpital's rule:

\lim_{x\rightarrow 0}{{{{{x}\over{\sqrt{x^2+1}}}+{{x}\over{\sqrt{1-  x^2}}}}\over{\sin x}}}

This still is an indeterminate form because \lim_{x\rightarrow 0} \sin x = 0.

So apply l'Hôpital's rule once again:

\lim_{x\rightarrow 0}{{{{{1}\over{\left(x^2+1\right)^{{{3}\over{2}}  }}}+{{1}\over{\left(1-x^2\right)^{{{3}\over{2}}}}}}\over{\cos x}}}={{{{{1}\over{\left(0^2+1\right)^{{{3}\over{2}}  }}}+{{1}\over{\left(1-0^2\right)^{{{3}\over{2}}}}}}\over{\cos 0}}}=2

\square