SolSept0911-2

Let I = \inf_{n > 0} \frac{a_n}{n}. We show that for any m \in \mathbb{N}, any \varepsilon > 0, there is an N \in \mathbb{N} with \frac{a_n}{n} \le \frac{a_m}{m} + \frac{\varepsilon}{2} for all n > N. By choosing m so that \frac{a_m}{m} \le I + \frac{\varepsilon}{2}, we get that I \le \frac{a_n}{n} \le I + \varepsilon, and hence \lim_{n \to \infty} \frac{a_n}{n} = I as claimed.

Let M = \max_{1 \le k \le m} a_k, and choose N \ge m so that \frac{M}{N} < \frac{\varepsilon}{2}. Let n > N. By long division, we can write n = qm + r, where 1 \le r \le m, and since n > m, q \ge 1. Then a_n = a_{qm + r} \le a_{qm} + a_r \le q(a_m) + a_r (by repeated applications of subadditivity), so

\frac{a_n}{n} \le \frac{q(a_m)}{n} + \frac{a_r}{n} \le \frac{q(a_m)}{qm} + \frac{M}{n} \le \frac{a_m}{m} + \frac{\varepsilon}{2}.\ \square