Soljan1706

From landen

Notice that 2\cos(2\pi/7)=e^{{{2\,i\,\pi}\over{7}}}+e^ {- {{2\,i\,\pi}\over{7}} }. If this is a root then x-e^{{{2\,i\,\pi}\over{7}}}-e^ {- {{2\,i\,\pi}\over{7}} } will divide x^3+x^2-2\,x-1.

So we proceed by just doing the long division and it works and we get no remainder.

\frac{x^3+x^2-2\,x-1}{x-e^{{{2\,i\,\pi}\over{7}}}-e^ {- {{2\,i\,\pi}\over{7}} }}= x^2+\left(-e^{{{5\,i\,\pi}\over{7}}}+e^{{{2\,i\,\pi}\over{7}}}+1  \right)\,x-e^{{{5\,i\,\pi}\over{7}}}+e^{{{4\,i\,\pi}\over{7}}}-e^{{{  3\,i\,\pi}\over{7}}}+e^{{{2\,i\,\pi}\over{7}}}
=x^2+\left(-\cos \left({{5\,\pi}\over{7}}\right)+\cos \left({{2\,\pi  }\over{7}}\right)+1\right)\,x-\cos \left({{5\,\pi}\over{7}}\right)+  \cos \left({{4\,\pi}\over{7}}\right)-\cos \left({{3\,\pi}\over{7}}  \right)+\cos \left({{2\,\pi}\over{7}}\right)

As a bonus we could use the quadratic formula on the quadratic and get the other two roots which happen to be real also.