Solution 1 Tues., Dec. 19, 2006

1. Find: \sum_{k=0}^\infty \frac{4}{(4k)!}\qquad\qquad(1)

Analysis

Define f(x)=\sum_{k=0}^\infty \frac{4\,x^{4k}}{(4k)!}

Next, notice that f^{\prime\prime\prime\prime}(x) -f(x)=0

f(0)=4;\ f^{\prime}(0)=0;\ f^{\prime\prime}(0)=0;\ f^{\prime\prime\prime}(0)=0; The characteristic equation for this ODE is \rho^4-1=0,\, \rho\, can be: \{1,-1,i,-i\}\,

This differential equation has the solution: f(x)=2\,\cosh(x)+2\,\cos(x)

Then \sum_{k=0}^\infty \frac{4}{(4k)!} = f(1) = 2\,\cosh(1)+2\,\cos(1)

Numerically this is 4.166765881366766991757684456\cdots which is the same as the sum of the first 11 terms of (1).

\square\,