Solution April 10, 2007

Problem

Let a sequence be defined as follows: a1 = 3, a2 = 3, and for n \ge 2

a_{n+1}a_{n-1}= a_{n}^{2}+2007.\qquad\qquad(1)

Find the largest integer less than or equal to Q := \frac{a_{2007}^{2}+a_{2006}^{2}}{a_{2007}a_{2006}}.

Solution

Take the difference of (1) for n=t\, and n=t+1\,.

a_{t+1}a_{t-1} - a_{t+2}a_t = a_t^2 - a_{t+1}^2\,
a_{t+1}(a_{t-1}+a_{t+1}) = a_t(a_{t}+a_{t+2})\,
T:=\frac{a_{t-1}+a_{t+1}}{a_t} = \frac{a_{t}+a_{t+2}}{a_{t+1}}\,

By induction we see that T\, is independent of t\,, so, perhaps surprisingly, a_n\, is generated by the linear recurrence

a_{n+1} = Ta_n - a_{n-1}\qquad\qquad(2).

In our case, a_3 = 672\, and T = 225\,. The characteristic equation of (2), t^2 = Tt - 1\, has solutions t_{1,2} = \frac{225 \pm \sqrt{224}}2 with t_1t_2 = 1\, and t_1+t_2 = T\,, and we get a closed form solution for a_n\,, namely

a_n = 3\cdot\frac{t_1^{n-1} + t_2^{n-2}}{t_1+1}

Then,

Q = \frac{(t_1^{2006} + t_2^{2005})^2 + (t_1^{2005} + t_2^{2004})^2}         {(t_1^{2006} + t_2^{2005})(t_1^{2005} + t_2^{2004})}
Q = \frac{t_1^{4012} + 2t_1 + t_2^{4010} + t_1^{4010} + 2 t_1 + t_2^{4008}}          {t_1^{4011} + t_1^2 + 1 + t_2^{4009}}
Q = \frac{T(t_1^{4010} + t_2^{4010}) + 4}          {t_1^{4010} + t_2^{4010} + T}
T > Q = T - \frac{T^2 - 4}{t_1^{4010} + t_2^{4010} + T} > T-1

The inequalities follow easily from t_1^3 > T > 2.

Thus, \lfloor Q\rfloor = T-1 = 224 which answers the problem.