Solution March 20, 2007

Problem

a,\,b,\,c,\,d are positive real numbers satisfying the following condition: \frac{1}{a}+\frac{1}{b}+\frac{1}{c}+\frac{1}{d}=4

Prove that: \sqrt[3]{\frac{a^{3}+b^{3}}{2}}+\sqrt[3]{\frac{b^{3}+c^{3}}{2}}+\sqrt[3]{\frac{c^{3}+d^{3}}{2}}+\sqrt[3]{\frac{d^{3}+a^{3}}{2}}\leq 2(a+b+c+d)-4

Solution

For brevity, define

L := \sqrt[3]{\frac{a^{3}+b^{3}}{2}}+\sqrt[3]{\frac{b^{3}+c^{3}}{2}}+\sqrt[3]{\frac{c^{3}+d^{3}}{2}}+\sqrt[3]{\frac{d^{3}+a^{3}}{2}}

We will show that

L\leq 2(a+b+c+d)-\frac{16}{a^{-1} + b^{-1} + c^{-1} + d^{-1}}\qquad(1)

whenever a,\,b,\,c,\,d> 0.

Lemma: (1) is true for all a,\,b,\,c,\,d> 0 if and only if

\sqrt[3]{\frac{u^{3}+v^{3}}{2}}\leq u+v-\frac{2}{u^{-1} + v^{-1}}\qquad(2)

holds for all u,\,v>0

Proof: It's easy to see that (2) follows from (1): just set a=u,\,b=v,\,c=u,\,d=v.

So assume that (2) is true for all u,\,v>0 and let a,\,b,\,c,\,d>0. Sum (2) for (u,v)\in\{(a,b),\,(b,c),\,(c,d),\,(d,a)\}. We obtain

L\leq 2(a+b+c+d)-\frac{2}{a^{-1} + b^{-1}}-\frac{2}{b^{-1} + c^{-1}}-\frac{2}{c^{-1} + d^{-1}}-\frac{2}{d^{-1} + a^{-1}}\qquad(3)

Now by the arithmetic-harmonic means inequality (http://planetmath.org/encyclopedia/ArithmeticGeometricMeansInequality.html),

\frac14\left(\frac{2}{a^{-1} + b^{-1}}+\frac{2}{b^{-1} + c^{-1}}+\frac{2}{c^{-1} + d^{-1}}+\frac{2}{d^{-1} + a^{-1}}\right)\geq \frac{4}{\frac{a^{-1} + b^{-1}}2+\frac{b^{-1} + c^{-1}}2+\frac{c^{-1} + d^{-1}}2+\frac{d^{-1} + a^{-1}}2}

and (1) follows from that and (3), completing the proof of the lemma. \square

All that's left to show is (2). For this purpose, let x:=\frac{uv}{(u+v)^2}. It's easy to see (http://planetmath.org/encyclopedia/ArithmeticGeometricMeansInequality.html) that x\leq \frac14.

Divide (2) by (u+v)\,, raise it to the 3rd power and simplify:

\frac12 - \frac{3uv}{2(u+v)^2} \leq (1 - 2x)^3
1 - 3x \leq 2 - 12x + 24x^2 - 16x^3
0\leq (1-4x)^2(1-x)

The latter inequality is true for all x\leq 1. This completes the proof of (2), and by our Lemma, proves (1). \square