Solution for November 5, 2006

Evaluate:

\sum_{n=1}^{\infty }{\arctan \left({{1}\over{n^2-n+1}}\right)}

Proof I by landen

We can derive a trig identity by differentiating and then integrating.

{{d}\over{d\,n}}\,\arctan \left({{1}\over{n^2-n+1}}\right) =  -{{2\,n-1}\over{\left(n^2+1\right)\,\left(n^2-2\,n+2\right)}} = {{1}\over{n^2+1}}-{{1}\over{\left(n-1\right)^2+1}}

If we integrate both sides, and check at n=1,\, that the constant of integration is 0 we get the trig identity:

\arctan \left({{1}\over{n^2-n+1}}\right)=\arctan n-\arctan \left(n-  1\right) Did you already know this one?

\sum_{n=1}^{m}{\arctan n-\arctan \left(n-1\right)}=\arctan m by telescoping.

\sum_{n=1}^{\infty }{\arctan \left({{1}\over{n^2-n+1}}\right)} = \lim_{m\rightarrow \infty }{\arctan m}={{\pi}\over{2}}

\square

Proof II by int-e

Recall that \tan(a+b) = \frac{\tan(a)+\tan(b)}{1 - \tan(a)\tan(b)}\,

Let a=\arctan(n)\, and b=-\arctan(n-1)\,, and apply \arctan\, on both sides. We get \arctan{n}-\arctan{(n-1)} = \arctan{\frac{1}{1-n+n^2}} \,

Next telescope as above. \square