Solution for Oct. 13, 2006

I.

Find the biggest real number k\, that for each right-angled triangle with sides a,b,c\,:

a^{3}+b^{3}+c^{3}\geq k(a+b+c)^{3}; a^2+b^2=c^2\,
k = \min \left({{c^3+b^3+a^3}\over{\left(c+b+a\right)^3}}\right)

Let a=\frac{1-t^2}{1+t^2};b=\frac{2\,t}{1+t^2}; c=1\, This is justified because the expression to be minimized and the constraint are homogeneous.

We want to minimize {{3\,t^2-2\,t+1}\over{4\,t+4}}. Taking the derivative and setting to 0\, we get: {{3\,t^2+6\,t-3}\over{4\,t^2+8\,t+4}}=0 This has a single positive root at: t=\sqrt{2}-1\,

k={{3\,\sqrt{2}-4}\over{2}} =0.12132034355964

\square

II.

For positive numbers x_{1},x_{2},\dots,x_{s}, we know that \prod_{i=1}^{s}x_{k}=1. Prove that for each m\geq n>0,\,  \sum_{k=1}^{s}x_{k}^{m}\geq\sum_{k=1}^{s}x_{k}^{n}

Using the generalized power mean, (http://en.wikipedia.org/wiki/Generalized_mean) we have:

\left( \frac{1}{s}\sum_{k=1}^{s}x_{k}^{m}\right)^\frac{1}{m}\geq \left( \frac{1}{s}\sum_{k=1}^{s}x_{k}^{n}\right)^\frac{1}{n}\geq \left( \prod_{i=1}^{s}x_{k}\right )^\frac{1}{s}=1

Raising to the m\,th power and multiplying by s.

\sum_{k=1}^{s}x_{k}^{m}\geq  \left( \sum_{k=1}^{s}x_{k}^{n}\right)^\frac{m}{n}\geq= s> 1
\sum_{k=1}^{s}x_{k}^{n}\geq 1 follows and since \frac{m}{n}\geq 1,\,
\sum_{k=1}^{s}x_{k}^{m}\geq  \left( \sum_{k=1}^{s}x_{k}^{n}\right)^\frac{m}{n}\geq \sum_{k=1}^{s}x_{k}^{n}

\square