Solution for Oct. 31, 2006

Show \sum_{n=1}^{\infty }{{{\sin \sqrt{n}}\over{n}}} converges.

Overview

Let a_n = {{{\sin \sqrt{n}}\over{\sqrt{n}}}}; b_n= {{1}\over{\sqrt{n}}}

The plan is to show that the partial sums

S_N =\sum_{n=1}^{N }a_n are bounded.

Then \sum_{n=1}^{\infty }{a_n\, b_n} converges by Abel's test. (http://pirate.shu.edu/projects/reals/numser/t_abel.html)

Using some experience we can guess a symmetric difference that will have our summand in its Taylor series. The integral of the summand always works but often we can guess a difference that produces the desired term without an analytic integral. Using Taylor's theorem about n\, with the Lagrange form (http://en.wikipedia.org/wiki/Taylor's_theorem) of the remainder we get:

-\cos \sqrt{n+x}+\cos \sqrt{n-x}={{\sin \sqrt{n}\,x}\over{\sqrt{n}}}-{{x^3\,\sin \sqrt{\xi}}\over{24\,\xi^{{{3}\over{2}}}}}-{{x^3\,  \cos \sqrt{\xi}}\over{8\,\xi^2}}+{{x^3\,\sin \sqrt{\xi}}\over{8\,\xi  ^{{{5}\over{2}}}}}

\xi \in [n-x,n+x]

Taking x=1/2\,, summing both sides, and using worst case values \xi=n-1/2\, and the \mbox{trig functions} = 1,\, we get:

\left| \sum_{n=1}^{m}{\cos \sqrt{n-{{1}\over{2}}}-\cos \sqrt{n+{{1  }\over{2}}}}\right| \leq 2

\left| \sum_{n=1}^{m}{{{1}\over{192\,\left(n-{{1}\over{2}}\right)^{  {{3}\over{2}}}}}+{{1}\over{64\,\left(n-{{1}\over{2}}\right)^2}}+{{1  }\over{64\,\left(n-{{1}\over{2}}\right)^{{{5}\over{2}}}}}}\right| converges absolutely. Therefore:

S_n = \sum_{n=1}^{m}{{{\sin \sqrt{n}}\over{n}}}=\sum_{n=1}^{N }a_n is bounded.

b_n= {{1}\over{\sqrt{n}}} goes monotonically to 0\, as n\rightarrow \infty\,

Then \sum_{n=1}^{\infty }{a_n\, b_n} converges by Abel's test. (http://pirate.shu.edu/projects/reals/numser/t_abel.html)

\square